■ 建築·都市専攻

人材の養成及び教育研究上の目的・専攻のポリシー 指導教授別研究内容・履修モデル 「建築学領域・都市工学領域」

■ 建築・都市専攻

人材の養成及び教育研究上の目的、専攻のポリシー、指導教授別研究内容、履修モデル(博士前期課程)

専攻主任教授 長岡 裕

1. 人材の養成及び教育研究上の目的

□博士前期課程

建築・都市専攻に係わる分野は理工学だけではなく社会学、経済学、歴史学など多岐にわたるため、広範かつ多面的な 視野を持ち、広く社会に貢献できる人材の養成を目的とする。修了後の就職業種は、公務員、ゼネコン、設計事務所、大 学など多岐に渡る。こうした広範な業種における高い専門性を有し、地球的視野を持った技術者の育成を目的とする。

□博士後期課程

高度な専門知識と技術を有し、さらに高い倫理観および責任感を兼ね備えることにより、建築・都市専攻に係わる分野にて活躍できる人材の養成を目的とする。さらに、先端的な知識と技術を駆使し社会ニーズを意識しながら、着実に課題を解決するとともに新しい領域を開拓でき、国際的にリーダーシップを発揮できる人材を養成することを目的とする。

2. 専攻のポリシー

ディプロマポリシー 学位授与の方針

□博士前期課程

所定の年限在学し、以下の知識と能力とともに所定の単位数を修得し、必要な研究指導を受けた上で修士論文又は特定の課題についての研究成果等の審査及び最終試験に合格した者に、修士(工学)の学位を与える。

- 1. 幅広い教養と国際コミュニケーション能力を持ち、社会の発展に貢献でき、説明責任を果たすなどの実務上の対応能力や人間としての倫理をより高めることができる総合的な知識や応用能力を修得している。
- 2. 建築・都市の文化芸術的側面と理工学的側面を多角的、総合的に理解し、理工学全般で必要な基礎学力を修得している。
- 3. 建築・都市に係わる総合的な知識、専門的能力、および問題解決に向けての応用能力を修得し、建築家・建築技術者・都市工学技術者としての総合的な設計能力を修得している。
- 4. 生涯にわたって自主的に学び続け、建築や都市の文化、技術の発展に寄与し、社会の発展に貢献できる建築家・建築技術者・都市工学技術者としてのマネジメント能力、コミュニケーション能力を修得している。

□博士後期課程

所定の年限在学し、以下の知識と能力とともに所定の単位数を修得し、必要な研究指導を受けた上で博士論文の審査及び最終試験に合格した者に、博士(工学)の学位を与える。

- 1. 建築・都市専攻に関する新たな研究によって得られた知見をまとめあげ、より深化した学問として専門知識を体系化できる能力を身に付けている。
- 2. 建築・都市専攻に関する研究者とし、自立して研究活動を行う能力を身に付けている。
- 3. 建築・都市に関わる分野における先端的な知識と技術を駆使し社会ニーズを意識しながら、着実に課題を解決するとともに新しい領域を開拓できる研究能力を身に付けている。
- 4. 建築・都市専攻において修得した高度な専門知識と技術をもとに、国際的に活躍できる能力を身に付けている。

カリキュラムポリシー 教育課程の編成方針

□博士前期課程

建築・都市専攻に関わる分野は理工学だけではなく社会学、経済学、歴史学など多岐にわたるため、広範かつ多面的な視野を持ち、広く社会に貢献できる人材の養成を目的とする。修了後の就職業種は、公務員、ゼネコン、設計事務所、大学など多岐に渡る。こうした広範な業種における高い専門性を有し、地球的視野を持った技術者を養成するため、次のように教育課程を編成する。

- 1. 文化・社会・環境などの教養や技術者倫理を修得し、国際的に活躍できる語学力と国際コミュニケーション能力を育成するため、総合教養科目群及び総合基礎科目群を編成する。
- 2. 理工学全般に共通する知識・能力(実行,思考,協働など)、ならびに、深い専門的知識・能力を修得するため、専門基礎科目群及び専門科目群を編成する。
- 3. 建築家・建築技術者・都市工学技術者として仕事を遂行するための専門的能力と総合的な設計能力、ならびに、実社会の複合的な問題を解決する能力を修得するため、専門科目群に建築・都市実習を配置する。
- 4. 実務におけるマネジメント能力およびコミュニケーション能力を育成し、専門家としての自己のキャリアを確立し、将来設計を高めるため、専門科目群に建築・都市特別研究を配置する。

□博士後期課程

高度な専門知識と技術を有し、さらに高い倫理観および責任感を兼ね備えることにより、建築・都市専攻に関わる分野に て活躍できる人材の養成を目的とする。さらに、先端的な知識と技術を駆使し社会ニーズを意識しながら、着実に課題を 解決するとともに新しい領域を開拓でき、国際的にリーダーシップを発揮できる人材を養成するため、次のように教育課 程を編成する。

- 1. 建築・都市専攻に関する新たな知見をまとめて学問として専門知識を体系化できる能力が身に付くように、講究科目群を編成する。
- 2. 建築・都市に関わる分野における自立した研究活動を行うために必要な深い学術的な知識が身に付くように、講究科目群を編成する。
- 3. 建築・都市専攻において修得した高度な専門知識と技術をもとに、国際的に活躍できる能力が身に付くように、特殊研究科目群を編成する。

アドミッションポリシー 入学者受入れの方針

□博士前期課程

- 1. 幅広い教養をもって国際的視野で、社会へ貢献したいと考えている人材。実務上の対応能力はもとより、人間としての倫理をより高めたいと考えている人材。
- 2. 建築・都市の文化芸術的側面と理工学的側面を多角的,総合的に理解したいと考えている人材。
- 3. 建築・都市に係わる総合的な知識、専門的能力、および問題解決に向けての応用能力を高め、建築家・建築技術者・ 都市工学技術者としての総合的な設計能力を修得したいと考えている人材。
- 4. 建築や都市の文化、技術の発展に寄与し、社会の発展に貢献できる建築家・建築技術者・都市工学技術者になりたいと希望する人材。

□博士後期課程

- 1. 建築・都市専攻に関する未開の知見を得るための研究活動に必要な幅広い専門学力を具備している。
- 2. 建築・都市専攻における自立した研究者になるために、課題解決を目指す研究遂行の持続力を具備している。
- 3. 建築・都市に関わる分野において指導的な役割を果たすために必要な実行力を具備している。
- 4. 建築・都市に関わる分野において国際的に活躍できるコミュニケーション能力の基礎を具備している。

3. 領域について

本専攻は建築学領域と都市工学領域からなる。

建築学領域では、建築物及び建築物で構成される地域を扱い、建築計画・建築史、建築設計、建築構造、建築生産・材料、建築環境設備などの分野からなる。

都市工学領域では建築物以外を広く扱い、都市の計画・マネジメント、構造物(交通施設、エネルギー施設、等)の設計、防災、環境(地盤、河川、海)などの分野からなる。

4. 指導教授別研究内容

【建築·都市専攻 建築学領域】

■西村 功

振動制御理論を応用した免震構造と制震構造の理論研究に基づく新構造システムの開発を行っている。解析研究にとどまらず、実験による実証研究に特色があり、多様なエンジニアリング分野を融合して新しい構造部材の開発や設計解析法の開発を行っている。また、アクティブ振動制御理論研究の成果として、制御エネルギーを必要としない制御アルゴリズムが完成した。この理論を応用し日本周辺の海域から波動エネルギーを電気エネルギーに高速で変換する波動発電装置の研究を行っている。

■岩下 剛

住宅・学校・オフィス・商用施設の居住環境、環境設備システムを対象に、快適性、安全性、健康性、作業性(パフォーマンス)に配慮した計画・管理・制御をテーマとして研究を実施している。建築計画原論、建築保健工学、環境設備システム学の学問体系を基に、室内空気環境をはじめ、社会で現在問題となっている事象をテーマとして選んでいる。 学習成果が現場である居住環境の改善・リスクの低減に役立つような対策技術も学修する。

■大村 哲矢

日本は地震大国であり、建物は大地震に耐えうるように設計するものと法律で定められている。しかし、その法律が定められた以前の古い建物はその性能を有していないことが多い。また、近年の建物は、倒壊しないように設計されているが、地震後に建物を継続して使用できるとは限らない。このような背景から、古い建物については耐震補強をどのように実施していくべきか、新たに設計する建物については地震に対してどのような性能を設定して設計していくべきかに関して実験および解析によるシミュレーションを実施して研究を行う。

■落合 陽

木造建築・木質材料は環境問題の解決のため近年大きな注目を浴びており、それに応じて従来の住宅規模からオフィス・学校施設などへの大規模化が急速に進んでいる。しかし、木造建築の大規模化に向けた技術発展には未だ課題も多い。特に、CLT などに代表される新素材、耐力壁・ラーメンなどの耐震架構、組み立て梁・トラス梁などの大スパン架構の高強度・高靭性化に向けた研究は喫緊のテーマである。これらのテーマに対して、調査・実験・解析のアプローチで解決を目指し、木造建築への理解を深める。

■小見 康夫

建築生産とは、建築をつくる仕組みを指す。狭義には、施工現場で展開される様々な構工法であるが、その背後には、 それらを担う企業や組織による活動、さらには様々な技術や制度の体系が存在する。わが国では建築は既に量的飽和に 達しているが、老朽化や性能の陳腐化が進行しており、これらのストックを持続可能な方法で健全化していくことが強 く求められている。こうした「ストック健全化」に向け、建築の様々な知見を総動員し、技術的な内容はもちろん、そ れをとりまく社会や制度まで含めた「課題発見と解決」のための研究を行っていく。

■片桐 悠自

1968年の五月革命以降、国際的な建築教育の潮流にドラスティックな変化が起こった。モダニズム様式を前提とする「計画神話」から、時間とともに変化する「都市の建築」への移行である。本研究室においては、これを歴史的事象として捉え、建築歴史・意匠・建築学を横断した建築理論の研究を行う。建築分野においては、図学・幾何学・スケール・材料・構法といった構築的な面を追いながら、時代の変化に伴う人々の価値観の変容と多様さを知ることが肝要である。研究・設計・理論の多面的な活動をもとに、国際的な視野でのパースペクティブを描くことを目標としている。

■小林 茂雄

地域の特性を活かした屋外照明計画を行い、その効果を検証している。フィールド調査と現場実験を行いながら、安全・省エネルギーで、固有性のある光環境を構築していく。照度や輝度の数値計算によって画一な照明計画を行うものでも、デザイン的に優れた光環境のみを構築するのでもなく、各々の現場において求められる空間性能を最大化させることを目的としている。従来の1/3 程度のエネルギーで実現することを目指している。

■近藤 靖史

ひとはほとんどの時間を室内で過ごす。ひとの健康性と快適性を維持するためには室内の空気環境と温熱環境を適切な状態に維持する必要がある。当研究室ではこのような観点から建物の断熱性能や換気・空調について研究している。 さらに、住宅で冬期に問題となるヒートショックを断熱改修でどの程度緩和できるかを検討している。一方、都市部で問題となるヒートアイランド現象や熱帯夜の緩和する方法として都市表面での日射反射率を高める「クールルーフとクールペィブメント」を提案し、検証している。

■佐藤 幸恵

建築物の長寿命化、高機能化技術の開発には、それらの性能を実現する建築材料が不可欠である。近年社会問題化しつつある建築物の既存ストックの増加に対し、その有効活用には経年した建築物の適切な診断と補修補強が重要である。さらに、他産業の副産物の有効活用や、建築材料のリサイクルなどの環境に対する配慮の要求が高まっている。このように、建築材料に対する要求の多様化に対応すべく、特にセメント・コンクリート系建築材料の高性能・高機能化技術の開発と環境配慮型材料の開発とその有効活用方法について研究を行う。

■焦 瑜

鋼構造の設計を行うには、骨組を構成する部材や接合部の性能を正しく把握しておく必要がある。特に大地震時に損傷を受ける箇所については、部材や接合部の性能を限界づける鋼材の限界状態も明かにしておくことが必要である。本研究室は、素材・部材及び骨組の3つのレベルから、鋼構造の耐震性能評価を行い、改修対策も考えながら、より多くの鋼構造建物を安全かつ災害直後でも継続使用できるようにレジリアントな社会を実現させるための研究に取り込んでいる。

■手塚 貴晴

建築の境界が持つ意味について文化的或いは環境的観点から考察を行う。建築の内外の境界が曖昧な日本では、空間は囲い込むものではなく「仕切る」あるいは「しつらえる」という概念で捉えられてきた。その結果どのような都市環境が生じるのかという間が研究室の主要なテーマとなる。検証には自然の概念から比較文化に至るまで広範な手法が使われる。日本建築空間を起点としているが、最終的には国際的な視点を持った結論を導き出す事を目標としている。

■中川 純

現代は転換期であり、最大級の政治的正しさに後押しされるかたちで建築の環境設計が要請されている。建築の可能性と表現の自由を担保するために、建築はどの様な空間や機能を持ちうるのか、技術と美学の両面から批評的に研究する必要がある。調査や実験を通して現代における課題を認識した上で、地域・社会との繋がりや自然環境と共生する建築を自然科学・社会科学の知見によって明らかにし、技術と美学を媒介するものについて建築計画学の観点から多角的に検証する。

■福島 加津也

研究内容は、最先端の建築デザインとその根底にある建築理論の2つである。本研究室の指導教員は、現役の建築家でもある。現役の建築家が大学で教えることにより、この2つを同時に研究することができるようになる。これまでの大学の枠にとどまらない実践的な活動から、新しい建築教育の可能性が拡がるだろう。建築は永く未来に残る。その建築を設計することは、未来を考えることに他ならない。本研究室が目指す未来とは、建築をデザインすることによって、理想の未来とは何かをみんなで考える社会をつくることである。

■堀場 弘

建築は人類とともに発展し、常に新しい技術と社会的な要請によって新しい建築が生み出されてきた。建築を文化として捉えて、どのように新しい時代の建築をつくるべきかを研究する。社会が建築を生み出すことを学ぶために、実現前提のコンペに参加する。現実の都市の魅力を感じるために、東京百景と題して、東京をドローイングを通じて解釈する活動を行う。またプロジェクトとして、大学キャンパス計画、栃木市嘉右衛門町地区の伝統的街並み修景に関する実践を地域住民とともに考えながら進めている。

【建築·都市専攻 都市工学領域】

■長岡 裕

都市の持続と発展に不可欠である上下水道システムを研究対象としている。特に、膜を利用した排水の再利用システムおよび浄水システムの最適化、水道管路システムにおける水質の変換機構の解明などを重点的なテーマとしている。特に膜を利用した高度排水処理システムである膜分離活性汚泥法に関しては、これまで多くの成果を上げており、国内民間企業との共同研究も数多く実施している。

■秋山 祐樹

安心安全な社会の実現には、実空間の実態と変化を把握する技術が不可欠である。そこで本研究室では様々な統計や空間情報(マイクロジオデータ)、ビッグデータ等を GIS や統計解析、AI などを活用して都市、建物、車、人などの活動をモニタリングし、その動向を分析することで、持続可能で快適な社会の実現とその支援を目指すことを目的とする。自治体や民間企業との連携や海外展開に興味がある方、新しいことにチャレンジしたいやる気のある方、社会人・留学生の方など、世界を変えていきたいという志を持つ方を期待する。

■伊藤 和也

地盤環境に関する課題に加えて地震・豪雨等の自然災害に対する防災上の課題について幅広い視点での検討を実施している。具体的には、要素試験、模型実験(遠心模型実験含む)、数値解析による①構造物基礎の安定問題や地震時挙動の解明、②豪雨・地震や切土中の斜面の安定問題、③トンネル掘削時の地盤安定問題、④自然災害に対するハード・ソフト対策の評価手法の開発、⑤建設工事の安全問題が挙げられる。

■稲垣 具志

誰もが住みやすい都市づくりに向けて、「交通」を軸とした政策の提言を目指し活動を展開している。道路の交通安全 対策、交通安全教育・啓発、都市交通のユニバーサルデザイン、地域公共交通の計画・評価、自転車の利活用といった、 市民の日常生活と密接にかかわる交通を対象としている。世田谷区をはじめとしたフィールドで、行政(政府・自治体・ 警察等)、交通事業者、子ども、高齢者、障害者、小中高校、町会・自治会、商業者など、都市生活における様々なステ ークホルダーと向き合い、人を中心とした実践的なアプローチを心掛けている。

■栗原 哲彦

コンクリート工学に関連した課題について主に実験により研究に取り組んでいる。最近では、①酸溶解によるリサイクル技術の開発、②振動計による内部鉄筋の腐食判定法の開発、③硬質ウレタンによる RC はりの補強効果の確認、④新たな粗面処理による付着特性の評価、⑤コンクリート打込み作業者の行動視覚化、を中心に企業や他研究者との共同研究も含めて、精力的に取り組んでいる。

■五艘 隆志

社会基盤整備プロジェクトのマネジメントはヒト(ステークホルダー、労働力、組織など)・モノ(資機材)・カネ(公会計、出融資など)・情報といったリソースの最適配分がその本質となる。本学科目ではこの配分を現実に動かす執行形態(設計施工分離、設計施工一括、PFI/PPP等)、入札・契約・監理・検査・検収・支払システム、コスト/時間/品質管理システムに関する研究を行っている。基礎自治体災害マネジメントシステム構築、技術者の生きがい、ICTを活用した生産性管理などは具体的フィールドを持つ産官との共同研究として実施している。

■白旗 弘実

構造物の経年劣化が問題となっている。鋼あるいはコンクリート構造物の非破壊検査、診断、常時監視に関する研究を行っている。具体的には、超音波探傷法による溶接部の品質管理、疲労き裂の検出、赤外線あるいは衝撃弾性波法によるコンクリート不連続部の検出、効果的な防食のための橋梁の降雨時の排水方法などについて、解析的、実験的に検討をしている。

■末政 直晃

本学科目では、地震時に発生する液状化に関する研究を行っている。まず液状化発生の有無を判定するため、地盤調査法や土質サンプリング方法を開発している。次いで、液状化対策工法として、薬液注入工法の高性能化やマイクロバブル・微粒子を地盤に注入する新しい工法の開発を行っている。他に、滑走路や老朽擁壁の維持管理を目的とした研究や洋上風力・宇宙開発に関連した基礎研究も実施している。

■関屋 英彦

橋梁やトンネル等の社会インフラの老朽化問題を解決するため、社会インフラの維持管理の高度化に関する研究に取り組んでいる。具体的には、センサー技術・IoT 技術・AI 技術・再生可能エネルギー技術等を活用したインフラモニタリングシステムの開発を行っている。開発を進めているシステムによって、インフラの健全度評価・損傷の発生検知・震災後の橋梁の状態の瞬時判定等が可能となる。

■中村 隆司

都市及び地域を巡る様々な課題に都市及び地域計画の面から取組んでいる。主な研究テーマとしては、①人口減少時代の都市形態と地域整備:例えば、コンパクトな都市の形成、地方都市の中心市街地の再生等、②日本の総合性を欠いている計画制度の改善方策:例えば、国土利用計画法に基づく計画制度の活用、土地取引規制制度の活用、減災のための土地利用計画等、③首都圏の実態と今後の方策:例えば、都市農地の実態、郊外部開発の経緯と高齢化、TODの観点から見た鉄道駅を中心としたまちづくり、多核多圏域型都市構造の実現等が挙げられる。

■丸山 收

都市施設は自然および人工的な外乱を受けるので、供用期間において安全性と機能性を確保するように設計、施工および維持管理をしていくことが求められる。長い供用期間において都市施設の性能を維持することを目的として、構造工学、耐震工学等に加えて経済学、社会学などの幅広い知見を取り入れた研究課題に取り組んでいる。主な研究テーマとして、構造物の性能設計理論、モニタリング技術、劣化予測と将来における補修・補強に関する意思決定問題などである。

■三上 貴仁

沿岸コミュニティは、津波や高潮といった沿岸災害に加え、土地利用の変化や気候変動などにともなうさまざまな課題に直面している。本研究室では、世界各地の事例の分析、数値シミュレーション、水理実験といった手法を用いて、災害による被害の発生メカニズム、災害による被害の軽減に向けた方策、災害や気候変動に対する沿岸コミュニティの脆弱性、これからの沿岸コミュニティのあり方などに関する研究を行っている。

■吉田 郁政

計測技術、デジタル技術の向上により各種インフラ施設の計測データが大量に得られるようになってきた。インフラ施設の合理的、効率的な設計、施工、特に維持管理においてこうした計測データを有効活用することは大変重要な研究課題である。データサイエンス技術、特にベイズ推定の理論を用いて地盤の3次元構造の推定や橋梁等の構造物の特性を推定する研究を行っている。

5. 履修モデル(博士前期課程)

履修モデル:建築計画・設計

建築計画・建築史、建築設計

総合基礎科目・総合教養科目	
技術英語演習 I	
技術英語演習 Ⅱ	
英語プレゼンテーション技法	
研究の作法	
インターンシップ	

専門基礎科目
建築計画特論
建築設計特論 I
都市デザイン特論
建築生産特論
住環境計画特論

専門科目		
建築設計特論Ⅱ		
近現代建築史特論		
日本建築構法史特論		
都市再生特論		
都市再生特論		
特別講義(建築·都市 I)		
設計インターンシップⅠ・Ⅱ・Ⅲ		

関連科目	
地域計画特論	

履修モデル: 建築構造

建築構造学

総合基礎科目・総合教養科目
技術英語演習 I
技術英語演習Ⅱ
偏微分方程式論
英語プレゼンテーション技法
研究の作法
インターンシップ

專門科目 固体力学特論 建築振動工学特論 建築構造計画特論 建築構法特論 建築材料特論 建築構造解析特論 関連科目

履修モデル: 建築生産・材料

建築生産・材料

総合基礎科目・総合教養科目
技術英語演習 I
技術英語演習Ⅱ
英語プレゼンテーション技法
研究の作法
インターンシップ

専門基礎科目建築生産特論

専門科目 建築構法特論 建築材料特論 建築構造計画特論 建築安全計画特論 関連科目

履修モデル: 建築環境設備

建築環境設備学

総合基礎科目・総合教養科目
技術英語演習 I
技術英語演習 Ⅱ
英語プレゼンテーション技法
研究の作法
エネルギー環境工学特論
インターンシップ

専門基礎科目 建築生産特論

專門科目 温熱環境学特論 空気環境学特論 光環境学特論 建築設備計画特論 関連科目

履修モデル: 構造安全・災害軽減

総合基礎科目・総合教養科目 偏微分方程式論 応用数値解析特論 技術英語演習 I 技術英語演習 II 英語プ レゼ ンテーション技法 研究の作法 インターンシップ

専門基礎科目 構造力学特論 応用数理統計特論 総合演習ゼミ

専門科目 コンクリート工学特論 構造信頼性特論 関連科目
地盤動力学特論
地盤工学特論
水理学特論
水圏環境防災特論
上下水道工学特論
地域計画特論
交通工学特論

履修モデル:地盤環境

総合基礎科目・総合教養科目 偏微分方程式論 応用数値解析特論 技術英語演習 I 技術英語演習 II 英語プ゚レゼンテーション技法 研究の作法 インターンシップ 専門基礎科目 地盤動力学特論 地盤工学特論 総合演習ゼミ 専門科目 コンクリート工学特論

関連科目 構造力学特論 水理学特論 構造信頼性特論 水圏環境防災特論 上下水道工学特論 地域計画特論 交通工学特論

履修モデル: 水圏環境

総合基礎科目・総合教養科目 応用数値解析特論 技術英語演習 I 技術英語演習 II 英語プ レゼンテーション技法 研究の作法 インターンシップ

専門基礎科目 水理学特論 総合演習ゼミ 専門科目 水圏環境防災特論 上下水道工学特論 関連科目 地盤動力学特論 地盤工学特論 構造力学特論 コンクリート工学特論 構造信頼性特論 地域計画特論 交通工学特論

履修モデル: 計画マネジメント

総合基礎科目・総合教養科目 応用数値解析特論 技術英語演習 I 技術英語演習 II 英語プレゼンテーション技法 研究の作法 インターンシップ

専門基礎科目総合演習ゼミ

専門科目 地域計画特論 交通工学特論 ユニバーサルデザイン特論

関連科目 地盤動力学特論 地盤工学特論 構造力学特論 水理学特論 コンクリート工学特論 構造信頼性特論 水圏環境防災特論 上下水道工学特論

特別講義(社会基盤マネジメントⅠ) 特別講義(社会基盤マネジメントⅢ) 特別講義(社会基盤マネジメントⅢ) 特別講義(社会基盤マネジメントⅣ)

履修モデル: 社会基盤マネジメント

専門基礎科目	専門科目
応用数理統計特論	国際建設契約管理特論
建設プロジェクトマネジメント特論	社会基盤情報マネジメント特論
国際建設マネジメント特論	リスクマネジメント特論
建設プロジェクトマネジメントシステム特論	ITプロジェクトマネジメント特論
社会基盤と経済分析特論	PPP/PF I 特論
	国際コンサルティングエンジニアリング特論
	契約責任・建設紛争の構造特論
	BIMを基盤とした建設マネジメント特論